$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$

This is a helpful equation used to relate the functions sine (otherwise known as sin) and cosine (otherwise known as cos) and tangent (otherwise known as tan). The \equiv symbol means "identical to" (i.e. tan theta is identical to sin theta over cos theta). This symbols means the relationship is always true, regardless of the value of θ . θ is a placeholder for an angle, and for this identity to work the angle must be the same for sine, cosine and tan.

We know, from SOH CAH TOA, that for a triangle $\sin \theta = \frac{opposite}{hypotenus}$, $\cos \theta = \frac{adjacent}{hypotenuse}$ and $\tan \theta = \frac{opposite}{adjacent}$

Therefore, using the example to the right, $\sin 36.9^\circ = \frac{3}{5}$, $\cos 36.9^\circ = \frac{4}{5}$ and $\tan 36.9^\circ = \frac{3}{4}$

N.B. 36.9° is a rounded value, the real value is 36.869897...°

$$\frac{3}{5} \div \frac{4}{5} = \frac{3}{5} \times \frac{5}{4} = \frac{3}{4}$$

5 5 5 4 4 See above how dividing one fraction by another is the same as multiplying that fraction by the reciprocal of the other. A reciprocal is a quantity that results from a number being divided into one e.g. $1 \div \frac{4}{5} = \frac{5}{4}$ and $1 \div 5 = \frac{1}{5}$, therefore the reciprocal of $\frac{4}{5}$ is $\frac{5}{4}$ and the reciprocal of 5 is $\frac{1}{5}$.

 $= \tan \theta$

 $\frac{\sin \theta}{\cos \theta} = \frac{opposite}{hypotenuse} \div \frac{adjacent}{hypotenuse}$

 $=\frac{opposite}{hypotenuse} \times \frac{hypotenuse}{adjacent}$

Proof Using SOH CAH TOA

Using the reciprocal rule from above

The value for the length of the hypotenuse cancels, leaving 1

	opposite 1
	$=$ $\frac{1}{1}$ $\times \frac{1}{adjacent}$
Multiplying these fractions gives	
	opposite
	$= \frac{1}{adjacent}$
Again, using SOH CAH TOA, we find that	

Therefore, we know that

180°

270° 360°

450°

Points to consider

Looking at the graph of $y = \tan x$ we will see that there are asymptotes at 90°, 270°, 450° and so on. This means that the values of $\tan 90^\circ$, $\tan 270^\circ$, $\tan 450^\circ$ etc. are undefined.

The reason for this is because when x is any of these values, $\cos x = 0$ (i.e. $\cos 90^\circ = 0$, $\cos 270^\circ = 0$, $\cos 450^\circ = 0$). By the equation $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$, which can otherwise be written as $\tan x \equiv \frac{\sin}{\cos x}$, for these angles $\sin x$ would be divided by 0. It is not possible for any value to be divided by 0 and so $\tan x$ for these angles is not defined.

See also

- Sine, Cosine and Tangent (SOH CAH TOA)
- Trigonometric Identity I

<u>References</u>

Attwood, G. et al. (2017). *Edexcel AS and A level Mathematics - Pure - Year 1*. London: Pearson Education. p.209